

Carbohydrate Research 259 (1994) C1-C3

Preliminary communication

2-Acetamido-4-*O*-[(*S*)-1-carboxyethyl]-2-deoxy-D-glucose: a new natural isomer of *N*-acetylmuramic acid from the O-specific polysaccharide of *Proteus penneri* 35

Yuriy A. Knirel ^{a,*}, Nikolay A. Paramonov ^a, Eugeny V. Vinogradov ^{a,1}, Nikolay K. Kochetkov ^a, Zygmunt Sidorczyk ^b, Krystina Zych ^b

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 117913 Moscow, Russian Federation

(Received February 23rd, 1994; accepted March 9th, 1994)

Recently [1,2], 2-acetamido-3-O-[(R)- and (S)-1-carboxyethyl]-2-deoxy-D-glucoses (N-acetylmuramic acid and N-acetylisomuramic acid) have been identified as constituents of the O-specific polysaccharides of Yersinia ruckerii II and Proteus penneri 62, respectively. We report now the isolation and identification of 2-acetamido-4-O-[(S)-1-carboxyethyl]-2-deoxy-D-glucose from the O-specific polysaccharide of Proteus penneri 35.

The polysaccharide was obtained by mild acid degradation (2% CH₃COOH, 100°C) of the lipopolysaccharide isolated from dry bacterial cells by the phenol-water procedure [3]. Its 13 C NMR spectrum showed the presence of OAc groups in a nonstoichiometric amount ($\delta_{\rm C}$ 21.5), which were removed by treatment with aqueous 10% ammonia (60°C).

Conventional sugar analysis of the O-deacetylated polysaccharide revealed rhamnose, glucose, galactose, and 2-amino-2-deoxyglucose in the ratios $\sim 2:1:1:1$. As judged by the ¹H and ¹³C NMR spectra, the polysaccharide has a hexasaccharide repeating unit (there were signals for six anomeric protons in the region 4.53-5.60 ppm and carbons in the region 99.6-103.6 ppm). It contains two 6-deoxyhexoses [signals for H-6 at δ 1.25 and 1.32 (each 3 H, d, $J_{5,6}$ 6 Hz) and C-6 at δ 18.0 (2 C)], two N-acetylated amino sugars [signals for carbons bearing nitrogen at δ 55.9 and 56.5, and for two NAc groups: $\delta_{\rm H}$ 2.02 and 2.06; $\delta_{\rm c}$ 23.7 and

^b Institute of Microbiology and Immunology, University of Lodz, ul. Banacha 12/16, 90-237 Lodz, Poland

^{*} Author for correspondence.

¹ Present address: M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 10/16, 117871 Moscow, Russian Federation.

300	-MHz H	NMR da	ata (ð in j	ppm, J 11	1 Hz) "					
	H-1	H-2	H-3	H-4	H-5	H-6a	H-6b	H-2'	H-3'	NAc
2-A	cetamido-	4-O-[(R)	-1-carbox	yethyl]-2-	deoxy-D-g	lucopyranos	e			
α	5.18	3.86	3.87	3.47	3.86	3.77	3.86	4.38	1.35	2.04
	$J_{1,2}$ 3.1		$J_{3,4} 9$	$J_{4,5} 9$	$J_{5,6a}$ 4			$J_{2',3'}$ 7		
β	4.68	3.66	3.66	3.42	3.51	3.78	3.88	4.39	1.36	2.04
	$J_{1,2} \ 8$		$J_{3,4}$ 9	$J_{4,5}$ 9	$J_{5,6a}$ 4	$J_{5.6b}$ 4	$J_{6a,6b}$ 12	$J_{2',3'}$ 7		
2-A	cetamido-4	4- <i>O</i> -[(<i>S</i>)-	-1-carbox	yethyl]-2-	deoxy-D-g	lucopyranos	e (1)			
α	5.17	3.84	3.90	3.42	3.89	3.79	3.88	4.07	1.38	2.04
	$J_{1,2} 3.1$		$J_{3,4} 9$	$J_{4.5} 9$	$J_{5.6a}$ 5		$J_{6a,6b}$ 12	$J_{2',3'}$ 7		
β	4.70	3.68	3.68	3.40	3.50	3.75	3.89	4.07	1.37	2.04
	$J_{1,2}$ 8		$J_{3,4} 9$	$J_{45} 9$	$J_{5.69}$ 5	$J_{5.6b}$ 3	$J_{6a.6b}$ 12	$J_{2',3'}$ 7		

Table 1 300-MHz ¹H NMR data (δ in ppm, J in Hz) ²

Table 2 75-MHz 13 C NMR data (δ in ppm) a

	C-1	C-2	C-3	C-4	C-5	C-6	C-1'	C-2'	C-3'	CH_3CON	CH ₃ CON
2-A	cetamic	do-4- <i>O</i> -[(R)-1-c	arboxye	hyl]-2-d	eoxy-D-	glucopyra	inose			
α	91.8	55.4	71.6	78.5	72.2	62.1	182.7	79.2	20.0	23.1	175.6
β	96.2	58.0	75.4	78.3	76.0	62.1	182.7	79.2	20.0	23.4	175.9
2- <i>A</i>	cetami	do-4- <i>O-</i> [(S)-1-ca	arboxyet	hyl]-2-d	eoxy-D-	glucopyra	nose (1))		
α	91.7	55.4	70.8	80.1	71.9	61.2	182.9	79.5	20.1	23.1	175.5
β	96.0	57.7	74.1	79.8	76.5	61.3	182.9	79.5	20.1	23.4	175.8

^a The spectra of the NH₄-salts were run in D₂O at 30°C.

24.1 (Me), 175.4 and 175.7 (CO)], and an ether-linked lactic acid { $\delta_{\rm H}$ 1.30 (3 H, d, $J_{2',3'}$, 7 Hz, H-3') and 4.42 (1 H, q, H-2'); $\delta_{\rm C}$ 18.8 (C-3') and 182.3 (C-1'); cf. data in the literature [2,4]}.

Solvolysis of the *O*-deacetylated polysaccharide with anhydrous HF (20°C) followed by anion-exchange HPLC on TSK DEAE-3SW in 2% acetic acid resulted in isolation of an *N*-acetylated acidic amino sugar (1). The 1 H and 13 C NMR chemical shifts (Tables 1 and 2, respectively) and the $^{3}J_{\rm H,H}$ coupling constant values (Table 1) showed that 1 is 2-acetamido-2-deoxyglucose etherified by lactic acid. Pre-irradiation of H-2' of the lactic acid residue at δ 4.07 caused a strong nuclear Overhauser effect on the signals at δ 3.40 (H-4 β) and 3.42 (H-4 α), thus indicating the substitution of GlcNAc at position 4.

^a The spectra of the NH₄-salts were run in D₂O at 30°C.

Authentic 2-acetamido-4-O-[(R)- and -(S)-1-carboxyethyl]-2-deoxy-D-glucoses were synthesized by alkylation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy- α -D-glucopyranoside [5] with (S)- and (R)-2-chloropropionic acid, respectively, followed by hydrogenolysis over Pd-C as described [5]. The natural compound 1 was found to be indistinguishable from the synthetic (S)-isomer and different from the (R)-isomer by the 1 H and 13 C NMR spectra (Tables 1 and 2, respectively). The most significant differences between the chemical shifts for the (R)- and (S)-isomers were observed for H-2' (S 4.38-4.39 and 4.07, respectively) and for C-3,4,6 (Table 2). Comparison of the specific optical rotation values of 1 and the synthetic (S)-isomer {[α] $_D^{28}$ +8.0° and +8.6° (H $_2$ O), respectively} showed that they have the same absolute configuration {cf. [α] $_D^{28}$ +41.7° (H $_2$ O) for the (R)-isomer}.

Therefore, the acidic amino sugar isolated from the O-specific polysaccharide of *P. penneri* 35 is 2-acetamido-4-*O*-[(S)-1-carboxyethyl]-2-deoxy-D-glucose (1). To the best of our knowledge, this isomer of *N*-acetylmuramic acid has not hitherto been found in Nature.

Acknowledgment

This work was supported in part by grant No. 93-03-5839 of the Russian Foundation in Fundamental Sciences.

References

- [1] J.H. Banoub, D.H. Shaw, H. Pang, J.J. Krepinsky, N.A. Nakhla, and T. Patel, *Biomed. Environ. Mass Spectrom.*, 19 (1990) 787-790.
- [2] Y.A. Knirel, N.A. Paramonov, E.V. Vinogradov, N.K. Kochetkov, Z. Sidorczyk, and A. Swierzko, Carbohydr. Res., 235 (1992) C19-C23.
- [3] O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-89.
- [4] L.A.S. Parolis, H. Parolis, G.G.S. Dutton, P. Lee Wing, and B.J. Skura, *Carbohydr. Res.*, 216 (1991) 495-504.
- [5] Y.P. Abashev, T.M. Andronova, S.E. Zurabyan, and A.Y. Khorlin, Bioorg. Khim., 7 (1981) 980-984.